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I. INTRODUCTION

Articulated Soft Robots (ASRs), as shown in Fig. 1, rep-
resent one of the most significant evolutions in robot design
in recent times [31, 32, 11, 9, 15, 12]. Their introduction was
motivated by the desire to approach biological performance
[7] by purposefully introducing elastic elements into the drive
train to act as energy storage; these are of either constant [36]
or variable impedance [42].

The interest in ASRs arises from the unique advantages
compared to robots based on rigid mechanisms. Conventional
industrial robots are fast and precise machines that excel at
producing manufactured goods at an incredible throughput
with high precision. Robots interacting with humans, however,
have different requirements—”safety first” is the most critical
design consideration, with accuracy being of secondary im-
portance. Here ASRs shine as elastic elements dynamically
decouple the actuator’s rotor inertia from the links during
impacts [3, 45], thereby significantly reducing the potential
for human injury [28, 29]. There are three major motivations
to introduce compliant actuation: 1) inherent safety for human-
centered robotics [3], 2) excellent mechanical robustness
against impacts [43], and 3) energy storing capabilities enable
highly explosive and/or efficient motions [4, 29, 8]. However,
these advantages come at a price.

II. NEW TECHNOLOGIES BRING NEW CHALLENGES

Naturally, a paradigm shift in technology introduces new
challenges. The implementation of a compliant physical struc-
ture enables the embodiment of safe and natural behaviors into
a robotic system. However, the higher the actuator compliance,
the more dominant the inherent oscillatory dynamics and the
lower the control bandwidth [36, 18]. This is the price for the
advantages above; a careful trade-off is required [44, 13, 10].

Spong and Ortega [38] list four structural properties of the
rigid robot model that are most relevant for control purposes.
Among these, it turns out that two fail for the ASR model:
P1) There is an independent control input for each degree
of freedom, and P2) the dynamics equations define a passive
mapping between control inputs and link velocities. For ASRs
P1 trivially fails, as the number of control inputs is (at
least) twice the number of degrees of freedom, and neither
is the mapping from inputs to link velocities passive [34].
This is the familiar problem of non-collocation of inputs and
outputs that poses fundamental challenges for stabilization
[33]. Interestingly, however, it turns out that P1 and P2 can
be “recovered” for some systems, as discussed below.
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Fig. 1. Natural and safe human-robot interaction facilitated through the
Cartesian impedance controller in [21] implemented on an ASRs.

III. RESEARCH OBJECTIVES AND CONTRIBUTIONS

The objective of my research is twofold. On the one hand,
it aims to advance the control of underactuated systems. On
the other hand, building on the results, I pursue the long-
term goal of enabling robots to execute natural and efficient
movements. Just think of the awe-inspiring performances of
Olympic gymnasts, or the gracious and fluid movements of
world-class ballet dancers. To accomplish this goal, I strongly
advocate the utilization of compliant systems. The following
sections summarize my contributions in this direction.

A. Unifying the Control of Fully and Under-Actuated Systems

The dynamic control of underactuated systems remains an
ongoing challenge in control theory. We still lack general
control principles that are practically applicable [26]. The crux
is that many exciting problems in robotics belong to this
class (soft robots, object manipulation, aerial, aquatic, and
terrestrial locomotion) [39]. Motivated by this, I introduced
the novel concept of quasi-full actuation (QFA) to unify
the control and analysis of fully actuated systems and a
general class of underactuated Lagrangian systems [24, 17].
The considered systems are characterized by the fact that
they can be represented as the interconnection of actuated
and underactuated subsystems, with the kinetic energy of each
subsystem being only a function of its own motion. ASRs are
typical representatives—and the main focus of my work.

The concept of QFA is based on a simultaneous coordinate
and input transformation, on the extended phase space, that
enables the considered class of underactuated systems to be
treated as if they were fully actuated. Since the new inputs
cannot be chosen entirely freely, the transformed system is
referred to as quasi-fully actuated. Key aspects of the trans-
forming equations are 1) both the original and transformed
systems are characterized by the same Lagrangian function,



2) the transformed system defines a passive mapping between
the new control inputs and velocities, and 3) the solutions
of both systems are in a one-to-one correspondence and thus
describe the same physical reality. This correspondence allows
for the study and control of the behavior of the quasi-fully
actuated system instead of the underactuated system. In other
words, this novel approach allows the “recovery” of P1 and P2
and opens the door for the direct application of energy-based
control techniques inherited from the fully-actuated case, while
guaranteeing closed-loop system stability and passivity.

Research Question: Is it possible to extend the concept of
QFA to other classes of underactuated systems beyond ASRs?

It is well-established that for collocated systems, the input-
output (I/O) mapping is passive, readily allowing for robust
stabilization using traditional control methods [5, 2]. With
the QFA concept ”recovering” the collocation property, the
transformed system’s implied I/O passivity presents a new
pathway for robust control designs in underactuated systems
[24, 17]. This raises the question of whether “modern” control
techniques, such as reinforcement learning (RL), can also
benefit from integrating the QFA concept.

Research Question: When applied to underactuated sys-
tems, do RL algorithms similarly profit from the restored
collocation of inputs and outputs by leveraging the concept
of QFA? Specifically, it is worth investigating whether the
training period can be shortened and whether more robust
control designs can be obtained by utilizing QFA.

B. A Minimalistic Control Approach for ASRs

By using the concept of QFA, a “minimalistic” control
design can be pursued in the sense that the desired target
behavior of the system is obtained by the least feedback
modification of its dynamics [24, 17]; imagine the opposite
spectrum of feedback linearization [37, 6]. Such an approach
fits perfectly to underactuated ASRs for the following reason.

Experiences in the lab repeatedly revealed that control
approaches that modify or override the intrinsic rigid robot
dynamics to a significant extent tend to show unstable be-
havior on actual hardware . The higher the joint compliance,
the lower the mechanical bandwidth [36, 1] and the more
pronounced this issue becomes. This observation initiated the
development of a series of passivity-based control schemes
[19, 20, 16, 22, 21, 23, 24, 25, 30, 35, 14] for robots with
elastic or viscoelastic joints that aim at minimizing the system
shaping. “Do as little as possible.” These words summarize the
design philosophy best. The underlying hope is that reducing
the system shaping and having a closed-loop dynamics match
in some way the intrinsic structure of the robot will award high
performance with little control effort—with natural motions
being an emergent behavior. Further, by minimizing the sys-
tem shaping, we obtain low gain designs, which are favorable
with regard to robustness. A comparison with state-of-the-art
controllers in [17] highlights the minimalistic nature of the
developed control designs.

Last but not least, two of my central works [21, 25]
dispelled two common “misconceptions” of the community:

Fig. 2. The following demonstrations highlight the performance and robust-
ness of a motion control framework based on my works [19, 16, 25]. (left)
The elastic robot David is tasked to grasp a vacuum cleaner and drill hammer
to bore a hole into a concrete plate. (right) An updated version autonomously
unloads a dish washer, thereby relying on the high motion accuracy and careful
interaction capabilities provided by the underlying control framework.

1) if passivity is desired, the renderable closed-loop stiffness
is bounded by the joint stiffness of the SEA [41, 27], 2)
rigid robots outperform elastic ones in terms of positioning
accuracy. However, in [21], I showed that injecting load-side
damping through the proposed controller and by considering
the load port, instead of the standard spring port [40], results
in less conservative criteria. In fact, any desired closed-
loop stiffness can be passively rendered with the proposed
controller—independent of a system’s joint stiffnesses. The
result extends to systems with nonlinear elasticities [21] or
elastic couplings [17]. Finally, the controller in [25] achieves
a steady-state-error of 15 µrad on our VSA robot in Fig. 2,
which is exactly the physical limit considering a position
sensor resolution of 16 bits. This result highlights clearly that
when it comes to positioning accuracy, rigid and elastic robots
are potentially on equal footing.

Research Question: Robot design and control is usually
a sequential process. However, in order to exploit the full
potential of elastic systems, we must unify the mechanical and
control design. Essentially, we must ensure that inertial, elastic
and control forces harmonize and don’t fight each other. In this
way only, can a controller be truly minimalistic in the absolute
sense. How to achieve this?

IV. CONCLUSION AND OUTLOOK

My motion control framework based on [19, 16, 25] enables
our VSA robot in Fig. 2 to carry out commercially interesting
tasks, including pick and place, teleoperation, drill-hammering
into a block of concrete and unloading a dishwasher. The
successful execution of such tasks demonstrates that compliant
robots have a promising future in the commercial space.

In conclusion, soft robots excel in situations when highly
dynamic contacts or collisions occur. In a future where robots
are no longer afraid of impacts, but interact with humans and
actively engage in contacting the environment, a predominant
part of everyday robot assistants is likely soft.
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